読者です 読者をやめる 読者になる 読者になる

アラフォーの男が、20年ぶりに数学の勉強を始めた

脱サラして数学に人生を賭けた無謀な男の物語

イプシロン・デルタ論法(ε-δ 論法)が分かった

数学


【微分積分】関数の連続性(イプシロン・デルタ論法)

 

大学数学の最初の難関、その名はイプシロン・デルタ論法。

実数値関数の連続性について論じたものですが、実数の連続性の勉強ついでに本日勢いで挑戦しました。

これが分からなければ数学を諦めるつもりだったので、自分としても最初のハードルであったわけです。

 

| x - a | < δ    ⇒    | f(x) - f(a) | < ε

 

シンプルにして完璧な記述ですね。絶対値記号の威力に感動すら覚えました。

 

この論理の要諦を自分なりの言葉で記述すると、点x=aにおいて「連続でない」とは即ち、x=aの前後いずれかでグラフの飛躍が

存在することと同値であり、それがどんなに小さな飛躍であっても実数の性質から飛躍幅よりも小さなεは無数に設定可能であり、その場合はδをいかに小さくしても| f(x) - f(a) | > εとなるxがaの前後いずれかで発生し上記は成立しないということです。

 

 

飛躍や前後といった感覚的な表記をしてしまいましたが、一寸の隙もない美しい論理だと初学ながら思いました。

小平解析入門と坂内健一先生の解説動画が非常に参考になったので、9割は理解出来たと信じたいところです。

 

f:id:Matheyan:20161126231739j:plain